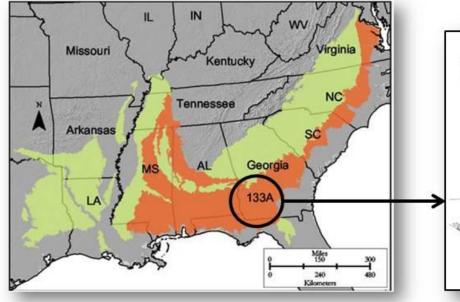
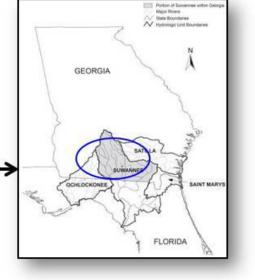
SALMONELLA DETECTION IN FARM PONDS AND IRRIGATION DISTRIBUTION SYSTEMS USED FOR MIXED PRODUCE PRODUCTION IN SOUTHERN GEORGIA WESTERN CENTER for FOOD SAFETY

Michele T. Jay-Russell¹ and George Vellidis² ¹Western Center for Food Safety, University of California-Davis ²Department of Crop and Soil Sciences, University of Georgia-Tifton


Introduction


•The proposed produce safety rule under the Food Safety Modernization Act (FSMA) requires that agricultural water must be safe and of adequate sanitary quality for its intended use.

•These requirements may be challenging for farmers using surface water sources such as constructed farm ponds found commonly on mixed produce farms in the southeastern coastal plane (SECP).

 Southern Georgia is representative of the SECP agricultural practices, climate, and water resources in this important produce production region.

> Southeastern Coastal Plain USDA NRCS Land Resource Region

Methods

•Salmonella and generic E. coli concentrations (CFU/100 mL) were monitored at one farm with different irrigation distribution systems during 3 vegetable growing seasons in 2012-2013. •Water was collected from ponds in 1 L bottles at the surface and subsurface (1 m) near the intake and at the well pump; catch cups were used to collect water from sprinklers, pivots, and drip lines (start and end). •Genetic relatedness of isolates were compared by using PFGE analysis.

Our research objective was to conduct a pilot study to assess the presence and concentration of Salmonella and indicator bacteria in irrigation water sources exiting different distribution systems on a mixed produce-tomatoes, squash, peppers, eggplant, cantaloupe, leafy greens-farm in southern Georgia.

Results

Irrigation Water Source	No. Tested	Salmonella		Generic <i>E. coli</i> (CFU/100 mL)			
		No. Positive	% Pos	Avg	Min	Max	
Pond 1							
Surface water	21	2	9.5%	7.62	0	65.26	
Subsurface water							
(1 m)	26	7	26.9%	6.79	0	33.68	
Pivot sprinkler							
heads	50	11	22.0%	8.1	0	58.59	
Solid set sprinkler							
heads	16	0	0.0%	2.37	0	6.32	
Pond 2							
Surface water	18	4	22.2%	7.44	0	40	
Subsurface water							
(1 m)	18	3	16.7%	3.5	0	9.47	
Drip (start of line)	36	8	22.2%	4.15	0	13.68	
Drip (end of line)	36	11	30.6%	3.36	0	11.58	
Well 1							
Well pump	32	0	0	0	0	0	
Drip (start of line)	32	0	0	0.1	0	3.16	
Drip (end of line)	26	0	0	0	0	0	

•Overall, mean Salmonella concentration was low (<1.0 CFU/100 mL) in positive water samples from ponds, drip and pivot systems. •Generic E. coli concentrations were below the proposed FSMA threshold regardless of Salmonella status for pond and well sources. •Indistinguishable Salmonella subtypes were found in pond-pivot and pond-drip samples collected on the same day and location.

THE UNIVERSITY OF GEORGIA College of Agricultural \mathcal{E} **ENVIRONMENTAL SCIENCES**

Constructed farm pond used for irrigation of vegetables in southern Georgia.

		ID	DATE	PONE	SAMPLE
		MJ687	4/24/12	2	Drip (end of line)
		MJ772	11/7/12	2	Drip (start of line)
	H I MIN 1 1	MJ776	6/24/13	1	Pond (surface)
		MJ777	6/24/13	1	Pivot
		MJ770	10/16/12	1	Pond (subsurface
9 P		MJ762	7/10/12	2	Pond (surface)
		MJ763	7/10/12	2	Pond (surface)
	# 144 # W 12	MJ764	7/10/12	2	Drip (start of line)
l.	N. 111 B 10 1 1	MJ765	7/10/12	2	Drip (end of line)
	1 1 1 10 101111	MJ757	7/10/12	2	Pivot
	1 1 8011 1 13 1	MJ771	11/7/12	2	Pond (surface)
		MJ695	6/13/12	1	Pond (subsurface
	1	MJ769	10/16/12	1	Pond (subsurface
2 F		MJ689	5/17/12	1	Pivot
	11 HILD TO DO	MJ690	5/17/12	1	Pivot
		MJ693	5/17/12	1	Pond (subsurface
	11 01000000	MJ696	5/17/12	1	Drip (end of line)
		MJ774	6/13/12	1	Pivot
		MJ766	7/10/12	2	Drip (end of line)
	1 1 1 1 1 1111 1 1	MJ688	4/24/12	2	Drip (start of line)
	1 1 1 11018 1 210	MJ697	6/13/12	1	Drip (end of line)
ЧЦ С		MJ759	7/10/12	2	Pond (subsurface
e	1 1000 0 10	MJ694	6/13/12	1	Pond (surface)
E	11 1 SS 30 51 5010	MJ760	7/10/12	2	Drip (end of line)
L		MJ761	7/10/12	2	Drip (start of line)

Dendogram showing genetic relatedness of selected Salmonella isolates.

Conclusions

•Findings from this pilot study suggest a low concentration of Salmonella moves through irrigation systems fed by farm ponds. Wells may be an alternative where microbial risks from surface water cannot be mitigated.

•Future research will examine more locations, the potential for transfer of *Salmonella* to produce following irrigation, and possible water disinfection options.

We are grateful for technical assistance by Debbie Coker, Herman Henry at UGA and Peiman Aminabadi, Elizabeth Antaki, and Yingjia Bengson at UCD. This work was supported by research grants from the U.S. Food and Drug Administration (Project No. U01-003-572) and a Western Center for Food Safety sub-award to *UGA (Project sub08002947).*