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Abstract

Fresh fruits, nuts and vegetables are increasingly linked to food-borne illnesses, outbreaks and

recalls. The trend represents a modern-day public health conundrum wherein consumers are

encouraged to eat more fresh produce to help prevent chronic health problems such as obesity

and heart disease, but at the same time consumption of contaminated produce can lead to

potentially life-threatening acute food-borne disease. Identification of environmental sources

responsible for the contamination of raw and minimally processed or fresh-cut plant commodities

is necessary to develop prevention strategies. Produce-related outbreaks have been caused by

faecal contamination of plants or surrounding watersheds following intrusion by wild or feral

animals. A wild animal shedding a zoonotic food-borne pathogen could contaminate plants directly

through faecal deposition or indirectly via faecal contamination of agriculture water or soil in

contact with the plants. Owing to the low infectious dose of zoonotic enteric pathogens and the

potential for attachment and possibly ingress into edible parts of plants, even a low level of

contamination from faecal pathogens represents a significant public health concern. This review

focuses on potential produce food safety risks from wild animals at the pre-harvest level, and

downstream processes that may promote pathogen survival and amplification that could lead to

human food-borne illnesses, outbreaks, and recalls. Microbe-plant interactions for the major

zoonotic food-borne pathogens and higher risk plant commodities are reviewed. Finally, current

guidelines and regulations to minimize risks related to wild animal activity in the production

environment are summarized.
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Review Methodology: Databases used in this review included NCBI PubMed and the Center for Produce Safety Global Research

Database. References from existing EndNote files and articles obtained from the database searches were also used to identify

additional relevant material. Conference proceedings following two special sessions on wildlife and food safety held at the 23rd and

25th Vertebrate Pest Conferences were also reviewed. Produce and plant product safety regulations and guidance documents were

found by searching agency/organization websites including the US Food and Drug Administration, Western Growers and the University

of California Postharvest Technology online libraries.

Introduction

Fresh fruits, nuts and vegetables are increasingly linked

to food-borne illnesses, outbreaks and recalls [1–4]. In the

USA, the Centers for Disease Control and Prevention

(CDC) estimated that plant commodities caused about

46% of domestically acquired food-borne illnesses from

1998 to 2008 [5]. The majority of these plant-based food-

borne illnesses were associated with edible horticultural

crops often consumed raw or minimally processed (e.g.,

fruits, nuts and vegetables) rather than agronomic crops

(e.g., cereals, grains, legumes) typically cooked or pro-

cessed with a pathogen ‘kill step’ such as heat or chemical

treatment. The trend represents a modern-day public
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health conundrum wherein consumers are encouraged to

eat more fresh produce to help prevent chronic health

problems such as obesity and heart disease, but at the same

time consumption of contaminated produce can lead to

potentially life-threatening acute food-borne disease.

Identification of environmental sources of food-borne

pathogens and deciphering the key transport processes in

the food supply chain are necessary steps to develop

targeted intervention strategies. Owing to the complexity

of fresh produce production (multiple commodities, dif-

ferent geographic regions, etc.) no single environmental

source has been identified as the root cause of microbial

contamination of fresh produce. At the farm level, pos-

sible environmental sources of enteric food-borne

pathogens include runoff or bioaerosols from nearby

domestic animal operations, human sewage/septic facil-

ities, infected farmworkers, contaminated agriculture

water, untreated manure-based soil amendments, flies or

other invertebrates and wild animal intrusion/defecation

in the production area [6].

The risk from wild animals in the microbial con-

tamination of leafy greens became an intense area of focus

following the highly publicized 2006 Escherichia coli

O157:H7 outbreak associated with ready-to-eat packaged

baby spinach that was traced to one field in the central

California coast [7–9]. The outbreak strain was isolated

from domestic cattle (Bos taurus) and feral swine (Sus

scrofa) sharing rangeland adjacent to the implicated spi-

nach field. Potential wild animal sources have also been

investigated following other outbreaks linked to fresh

produce from fields or orchards including dropped apples

used in unpasteurized juice, raw shelled peas, fresh

strawberries and raw carrots [10–13]. Faecal contamina-

tion of plants or surrounding watersheds following

intrusion by wild or feral animals is now considered one of

the significant risk factors for pre-harvest produce con-

tamination [14–18].

The purpose of this paper is to review the current

state of knowledge regarding the risk of zoonotic enteric

food-borne pathogen contamination of fresh produce

and other edible plant crops by wild animals, and highlight

current guidelines and regulations to minimize these risks

before and during production and harvest.

The Pathogens

There are over 250 pathogens and toxins that can

be transmitted by food and 31 are classified as the

major food-borne pathogens [19]. The goal of this section

is to highlight the epidemiological features of the major

zoonotic bacterial, parasitic and viral food-borne patho-

gens that have been found in wild animals. Examples of

pathogens from wild animals with an emphasis of those

found in produce production environments are shown in

Table 1. Of note, comprehensive reviews of prevalence

surveys of zoonotic enteric pathogens in animal hosts

have been published previously and are beyond the scope

of this review [20–22].

Bacteria

Campylobacter spp.

Campylobacter is a Gram-negative, curved rod-shaped

bacterium that lives commensally in the gastrointestinal

tract of birds and mammals. Campylobacter jejuni is the

leading cause of bacterial gastroenteritis worldwide and

the second leading cause after Salmonella in the USA [19].

Campylobacteriosis is usually self-limiting and deaths

are rare; however, antecedent C. jejuni gastroenteritis

is the leading cause of post-infectious Guillain–Barré

syndrome, an autoimmune disease that may lead to per-

manent paralysis. Campylobacteriosis outbreaks are most

often caused by consumption of contaminated raw or

undercooked poultry, unpasteurized dairy products and

unchlorinated water. Fresh produce-related campylo-

bacteriosis outbreaks are uncommon, probably because

of the fastidious growth conditions required by Campylo-

bacter compared with other zoonotic enteric pathogens

[23]. However, Campylobacter has been recovered from

fresh vegetables at the retail level [24].

Campylobacter is ubiquitous in healthy domestic and

wild animal populations, and has been detected in every

major vertebrate taxa and flies [25–27]. Bird reservoirs

that congregate in flocks are of the most concern for

contamination of agricultural fields. For example, Canada

geese (Branta canadensis) and other waterfowl are natural

reservoirs of Campylobacter and may contribute to the

contamination of crop fields and local watersheds, as well

as urban and suburban areas (Figure 1) [28–32]. A notable

camplobacteriosis outbreak involving raw shelled peas

contaminated with Sandhill crane (Grus canadensis) faeces

occurred in Alaska in 2008 [11]. The implicated pea farm

was located in the Mat-Su Valley near a wildlife refuge

where approximately 20 000 Sandhill cranes in the Pacific

Flyway migrated. Cranes were observed grazing and

defecating in the pea fields and C. jejuni strains genetically

identical to strains from the patients were cultured from

crane faeces and pea–soil mixtures. Campylobacter has also

been recovered from large game mammals including

cervids and wild boar [31, 33]. Campylobacter shedding

was documented from both gastrointestinal tract and oral

cavity samples collected from feral swine captured near

spinach fields in California [34]. Small carnivores, wild

rodents and rabbits are also potential reservoirs found in

and around agricultural fields [26, 31, 35, 36].

E. coli

E. coli is a Gram-negative, rod-shaped bacterium found

commonly in the human and animal gastrointestinal tract.
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Most E. coli are harmless, but a subset of strains may cause

severe disease. E. coli O157:H7 is the prototype of the

shiga toxin-producing E. coli (STEC). Over 200 STEC

serotypes have been described, but most human illnesses

are caused by E. coli O157 and six other STEC groups

(O26, O45, O103, O111, O121 and O145) [37]. The

E. coli O157:H7 serotype was first described as a cause of

human haemorrhagic colitis in 1982, but remained rela-

tively unknown to the public until 1993 following a highly

publicized multistate outbreak linked to undercooked

hamburgers served at Jack in the Box fast-food restau-

rants in the western USA [38]. This outbreak resulted

in significant litigation and was the impetus for major

policy changes to improve the safety of ground beef in the

USA [39].

To the surprise of many in public health, in the mid-

1990s unpasteurized juices, lettuce and sprouts emerged

as E. coli O157 food vehicles [1–4]. Notably, these pro-

duce-related outbreaks were also associated with sig-

nificantly more illness compared with ground beef [40].

The epidemiology of non-O157 STEC is less understood,

but beef products, raw milk, lettuce and raw sprouts

have been implicated in outbreaks [37]. The reason for

the emergence of STEC from plant-based foods is

likely multifactorial, but changes in consumer eating

habits (consumption of more fresh produce) and the

ability to detect geographically widespread illnesses

from centralized production facilities are probably con-

tributing factors [41, 42]. For example, two processing

firms account for approximately 90% of the entire retail

bagged-salad industry in the USA [41].

In 2006, a nationwide outbreak of E. coli O157:H7

associated with ready-to-eat packaged baby spinach

grown in California resulted in over 200 illnesses and

at least three deaths [7]. Similar to the Jack in the

Box outbreak of 1993 [38, 39], the 2006 Dole spinach

outbreak riveted the fresh-cut produce industry, and

spurred major changes in food safety practices. In 2007,

the leafy greens industry implemented voluntary good

agricultural practices (GAPs) and auditable metrics

through industry marketing agreements in Arizona and

California, the primary growing regions for leafy greens in

the USA [17, 18]. In 2013, the FDA published ground-

breaking proposed ‘Standards for the Growing, Harvest-

ing, Packing, and Holding of Produce for Human

Consumption’ under the 2011 Food Safety Modernization

Act [43].

It is generally accepted at this time that domestic

ruminants (cattle, sheep and goats), pigs (domestic and

wild) and deer are the most significant potential sources

of E. coli O157:H7 that could be involved in the con-

tamination of leafy greens [17, 18]. Domestic cattle are

considered the primary reservoirs of E. coli O157:H7 and

possibly some of the other STECs [20]. Deer have been

implicated in venison-related STEC illnesses suggesting

that cervids may also serve as a reservoir [44–47].

Surveys of deer populations have revealed generally low

levels (< 2%) of E. coli O157 shedding in faeces regardless

of their association with infected cattle [48–55]. Black-

tailed deer were investigated as potential sources of two

produce-related outbreaks in the western USA. Cody

et al. (1999) isolated E. coliO157:H7 from 1 of 11 (11%) of

deer droppings collected in an orchard following a multi-

state outbreak linked to unpasteurized apple juice; how-

ever, the isolate was genetically different from the human

outbreak strain [10]. In 2011, deer droppings were defi-

nitively linked to E. coli O157:H7 contamination of fresh

strawberries in Oregon that caused 15 illnesses and

two deaths [13]. Other large game mammals have been

confirmed as potential reservoirs of STEC including

wild boar and their crosses with domestic swine [9, 31,

33, 52, 56]. In 2006, a large population of feral swine was

observed on the ranch implicated in a nationwide E. coli

O157:H7 outbreak linked to baby spinach [8, 9]. A more

detailed analysis of this outbreak is described below

(Figure 2).

Reports of E. coliO157 detection in wild birds and small

mammals appear sporadically in the literature [21]. The

bacterium has been isolated from duck, gull, rat, opossum,

pigeon, rabbit, raccoon and starlings [57–63]. European

starlings (Sternus vulgaris) have been shown to transport

E. coli O157 between cattle herds and could theoretically

move the bacteria from infected animal operations to

produce fields [64–66]. There is also experimental evi-

dence that filth flies are capable of transferring E. coli

O157:H7 to spinach and other leafy greens [67, 68].

Salmonella enterica

Salmonella is a Gram-negative, rod-shaped bacterium that

colonizes the gastrointestinal tract of humans and animals.

Non-typhoidal Salmonella enterica is the second leading

Figure 1 Canada geese (B. canadensis) foraging in a
strawberry field

http://www.cabi.org/cabreviews
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cause of food-borne illness in the USA following norovirus

[19]. Over 2500 serovars have been described, but most

human illnesses and outbreaks are from several dominant

types (Enteritidis, Heidelberg, Javiana, Newport, Typhi-

murium) [5]. Poultry and eggs are most often associated

with food-borne disease outbreaks and recalls, but plant-

based food vehicles of salmonellosis are emerging

including raw tomatoes, peppers, melons, salad greens,

herbs (cilantro, parsley, basil), unpasteurized juices,

tropical fruits (mangoes, papayas) and sprouts [15].

Salmonellosis outbreaks have also been reported from

consumption of contaminated low-moisture plant pro-

ducts including nuts (almonds, peanuts, pine nuts), cereals

and dried spices. One of the largest food recalls docu-

mented in the USA was due to contaminated peanut

products from the Peanut Corporation of America in

2009. The outbreak was associated with 714 illnesses and

nine deaths in 46 states; 3918 peanut butter-containing

products were recalled [69].

Salmonella has been recovered from warm- and

cold-blooded vertebrates and invertebrates such as flies

[31, 33, 35, 70–76]. The food-processing industry has long

been aware of the risk of Salmonella from bird, rodent and

fly infestations. Good manufacturing practices in proces-

sing and retail facilities mandate pest control. Lessons

have been learned from the poultry industry with regard

to Salmonella risk from rodent infestations. Mice are

known carriers of Salmonella Enteritidis on layer farms,

which have been linked to human infections from con-

taminated eggs [77].

Compared with manufacturing plants and intensive

poultry operations, less is known about the role rodents

and other wild animals may play in Salmonella con-

tamination of open fields and orchards. Wild rodents and

birds are common in agricultural areas, and may represent

a potential source of Salmonella contamination of plants.

Birds aggregating in large numbers may cause heavy faecal

contamination of the production environment, especially

under roosting areas (powerlines, trees) [78]. In recent

studies of the diversity of Salmonella cultured from wild

animals captured in the central California coast, Salmonella

recovery was generally low in mammals and birds, and

Figure 2 Hypothetical scenario of an in-field faecal contamination source of the 2006 E. coli O157:H7 outbreak linked to
packaged baby spinach grown in the central California coast. The bottom of the figure shows results of a quantitative
microbial risk assessment model that predicted the estimated number of illnesses linked to cut spinach [118]. CFU=colony
forming units
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highest in wild-caught snakes [73, 74]. In a preliminary

study of domestic and wild canids, relatively high rates

of Salmonella were found in coyote scat samples

collected near produce fields in the desert southwest,

the second largest leafy greens production region in the

USA [79].

Only a few examples of a direct link between an animal

source and Salmonella contamination of a fresh produce

commodity have been documented, despite the extensive

range of potential animal reservoirs and widespread

diversity of fruits, nuts and vegetables that have been

associated with numerous salmonellosis outbreaks and

recalls (Table 1). This may be explained, in part, by limited

investigation into animal sources at the pre-harvest level

following Salmonella outbreaks. In addition, Salmonella can

persist in the environment for months to years without

re-introduction; thus, the original host may no longer

be present by the time an outbreak is recognized and

investigated. In one example, Parish et al. (1998) tested

wild amphibians as a possible source of contamination

following an outbreak of salmonellosis linked to un-

pasteurized orange juice. Different strains of Salmonella

were cultured from a toad and tree frogs near the pro-

cessing facility [80]. In 2012, fresh whole cantaloupes

grown in Indiana were linked to approximately 261

salmonellosis infections, including three deaths, in 24

states [81]. Wild birds were identified as a potential

source of the outbreak as noted in a warning letter from

FDA to the company: ‘Bird excrement in the rafters above

food contact surfaces (e.g., brush rollers, conveyor belts,

grading table) and directly on the processing line itself.

Allowing birds to roost in your packing facility could allow

them to defecate directly on to food products during

conveyance, grading and sorting.’

Listeria monocytogenes

L. monocytogenes is a Gram-positive, rod-shaped bacter-

ium found commonly in the environment. Most human

illnesses are caused by three serotypes (1/2a, 1/2b

and 4b). Unlike the enteric pathogens described above,

L. monocytogenes lives and grows readily outside of the

gastrointestinal tract as a saprophyte. L. monocytogenes

also grows at refrigeration temperature, thus putting

consumers at increased risk from ready-to-eat con-

taminated foods. Invasive listeriosis, the most severe form

of disease caused by pathogenic L. monocytogenes strains,

has the highest percentage of hospitalizations (94%) and

number of deaths among all of the reportable bacterial

food-borne pathogens [19]. The elderly, pregnant women

and immonocompromised persons are most likely to

suffer life-threatening illness. Dairy, deli meats and other

ready-to-eat foods including packaged salads are most

often associated with listeriosis outbreaks and recalls, but

raw sprouts and melons have also been implicated [82].

In 2011, fresh whole cantaloupe grown by Jensen Farms

in Colorado was the source of the deadliest reported

listeriosis outbreak in the USA, to date, with 147 illnesses

and 33 deaths reported from 28 states [83]. Multiple

outbreak strains were cultured from the packing shed

where unsanitary conditions and improper equipment

were believed to have caused the contamination.

The original source of L. monocytogenes introduction into

the packing facility was not identified. Although L. mon-

cytogenes may be shed in the faeces of healthy domestic

and wild animals [83–85], the ability of this pathogen to

live outside the animal host in soil, water and biofilms

makes wild animals less of a focus during outbreak

investigations. Animals could contribute to environmental

loading in the produce production and harvesting envir-

onment, but have not been implicated in direct con-

tamination of raw produce or other plant-based foods

leading to human illnesses or outbreaks.

Yersinia spp.

Yersinia pseudotuberculosis and Yersinia enterocolitica are

related Gram-negative, rod-shaped bacteria. Y. pseudo-

tuberculosis is also genetically similar to flea-borne Yersinia

pestis, the causative agent of human plague, but is trans-

mitted through faecal–oral ingestion. Human yersiniosis

is characterized by acute gastroenteritis and abdominal

pain that may resemble appendicitis and even lead to

unnecessary surgery. Most illnesses are associated with

raw or undercooked animal-based foods (especially

pork) probably following introduction during slaughter

and processing of food animals [5]. Wild animal hosts

may include beavers and other rodents, birds, wild

boars and fresh water fish [86–89]. Produce is rarely

associated with yersiniosis, but investigators in Finland

documented an unusual outbreak of Y. pseudotuberculosis

linked to raw carrots [12]. The outbreak strain was cul-

tured from a pooled sample of common shrew intestines

from one implicated farm suggesting that wild rodents’

droppings may have contaminated the growing environ-

ment.

Parasites

Cryptosporidium spp.

Cryptosporidium is a protozoal parasite that typically in-

habits the gastrointestinal tract of humans and animals.

Cryptosporidiosis is an important cause of diarrheal ill-

ness among both humans and domestic livestock and pets.

Human illnesses are most often associated with water-

borne exposure rather than food. Direct contact with sick

animals is also a significant source of zoonotic infections.

Transmission is via ingestion of Cryptosporidium oocysts,

which are shed in the faeces of infected humans or ani-

mals. Cryptosporidium does not replicate outside of the
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host, but oocysts may survive for prolonged periods

of time in the environment. Zoonotic Cryptosporidium

species could contaminate produce grown near

infected animals or exposed to contaminated agriculture

water or fertilizer [90]. An outbreak of cryptosporidiosis

linked to unpasteurized pressed apple cider occurred

in 1993 during a school agricultural fair in central Maine;

domestic livestock were suspected as the source of

the contamination [91]. The relative importance of wild

animals in the contamination of plants is uncertain, but

Li et al. (2013) found 26.0and 24.2% of wild rodents

trapped next to produce fields in California were positive

for Cryptosporidium spp. and Giardia spp., respectively [92].

Feral swine from the same produce growing region were

also shown to harbour these parasites [93].

Angiostrongylus cantonensis

A. cantonensis is a tropical parasitic nematode (round-

worm) and causative agent of rat lungworm. Natural

transmission involves a rat (definitive host) and snail/slug

(intermediate host) transmission cycle. Humans are acci-

dental hosts that may be exposed by ingestion of raw

snails/slugs or transport hosts such as frogs infected with

larvae. Once ingested by a human, the larvae migrate

aberrantly and cause neurological disorders characterized

by eosinophilic meningitis and encephalitis. Although

not among the major food-borne pathogens listed by

CDC, lettuce and raw vegetable juice have been sus-

pected as sources of angiostrongyliasis infections in

Hawaii and other tropical regions where consumers

may have unknowingly eaten small snails/slugs or been

exposed to larvae transported by slime on the plant leaves

[94–96].

Viruses

Zoonotic viruses comprise the majority of emerging

infectious disease agents, and an estimated 75% are

of wildlife origin [97]. Zoonotic viruses are frequently

transmitted by direct animal–human contact or via an

arthropod vector such as a mosquito or tick. Interestingly,

very few examples exist of food-borne transmission of

zoonotic viruses [98]. This could be because of the limited

host range of prevalent human food-borne viruses such as

Hepatitis A and norovirus. Underreporting and lack of

diagnostic tests may also contribute to under-recognition

of emerging food-borne viral zoonoses. Where food-

borne transmission of viruses from wild animal sources

has been documented, the usual route is by consumption

of contaminated meat or direct contact with tissues

during handling and preparation. Several exotic viruses

have been associated with increased wildlife trade, live-

animal markets and consumption of bushmeat and other

unusual foods.

Avian influenza

Avian influenza viruses are type A and belong to the family

Orthomyxoviridae. ‘Bird flu’ is distributed worldwide in wild

birds, especially aquatic species (e.g., ducks, geese and gulls)

and may also spill-over to domestic poultry and swine

[99]. Avian influenza viruses are classified as low or high

pathogenicity. Highly pathogenic avian influenza A (H5N1)

and H7N9 are considered a significant public health threat

due to the potential for interspecies transmission to

humans and subsequent human-to-human transmission.

The H5N1 virus is endemic in several Asian countries

including Bangladesh, China, Egypt, India, Indonesia and

Vietnam [99]. Live-animal markets where wild and

domestic animals are exposed to crowded conditions

contribute to the spread of dangerous subtypes of

avian influenza. Food-borne transmission of H5N1 is con-

sidered to be extremely rare, but has been linked to eating

raw blood-based poultry dishes. Direct contact with

infected birds during slaughter and dressing is a major risk

factor for human infection. Standard hygienic practices

during slaughter and processing, and proper cooking tem-

peratures are recommended to prevent human infections.

Although infected birds may shed influenza virus in their

faeces, the risk of cross-contamination of produce fields or

agriculture water following bird intrusions is unknown.

Hepatitis E

Hepatitis E virus is an emerging infectious disease primarily

diagnosed in Asia, Africa, the Middle East and Central

America. Hepatitis E belongs to the Hepeviridae family,

and causes symptoms similar to Hepatitis A virus. The

majority of human outbreaks are due to human-to-human

fecal–oral transmission via contaminated water, especially

following migration of refugees [100]. Zoonotic trans-

mission has been documented for two of four recognized

pathogenic genotypes of Hepatitis E and may account

for sporadic illnesses seen in developed countries. There

is increasing evidence that domestic swine are an impor-

tant reservoir of zoonotic Hepatitis E. Wildlife are also

potential reservoirs and human cases have been docu-

mented following consumption of organs from wild boar

and undercooked venison in several European countries

[101–103]. The risk of faecal shedding and environmental

contamination by animal reservoirs is unknown.

Noroviruses

In the USA, human norovirus is the leading cause of

viral gastroenteritis including among produce-related

food-borne disease outbreaks [5, 19]. Noroviruses

belong to Caliciviridae, a diverse family characterized by

host-specificity. Human norovirus is spread by faecal–

oral transmission and generally causes a self-limiting
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gastroenteritis. Prevention efforts are focused on proper

waste management, good hygiene and removal of sick

food handlers from the food production chain. The lack of

interspecies transmission probably explains why zoonotic

transmission does not appear to be important in the

ecology and epidemiology of noroviruses. However,

bioaccumulation of human enteric viruses by shellfish

following exposure to sewage has resulted in illnesses and

outbreaks from consumption of raw shellfish [104]. In

addition, animal enteric viruses such as murine norovirus

have proven to be useful surrogates to study the beha-

viour of human enteric viruses in plant production and

processing environments [105, 106].

Exotic viruses

Exotic viruses are defined as rare viruses with a limited

geographic distribution and infections are often associated

with high case-fatality rates. Many of the zoonotic exotic

viruses occur in tropical countries and have wild animal

reservoirs. Nipah and Hendra (Henipaviruses) are exam-

ples of emerging zoonotic viruses in the family Para-

myxoviridae. Henipaviruses are found in parts of Asia and

Australia where fruit bat reservoirs in the Pteropodidae

family occur. These viruses cause potentially fatal ence-

phalitis or respiratory disease in humans. Direct contact

with infected fruit bat reservoirs or domestic animals

exposed to the virus is the usual mode of transmission.

Interestingly, in Bangladesh food-borne Nipah virus has

been associated with consumption of raw date palm sap

pots contaminated with fruit bat excreta [107, 108].

Lassa virus (family Arenaviridae) and severe acute

respiratory syndrome (SARS; family Coronaviridae) are

zoonotic emerging infectious diseases. Lassa virus is an

important cause of haemorrhagic fever in Western Africa;

it is shed in the faeces and urine of peridomestic multi-

mammate rats inhabiting villages. Food-borne transmis-

sion has been documented following consumption of

infected rats [109]. The SARS virus was first recognized in

2002–2003 following an outbreak that originated in Asia

and spread around the world via infected travellers. The

SARS virus is primarily transmitted human-to-human by

respiratory droplets. The virus is believed to have been

introduced by horseshoe bats and civets in live-animal

markets in Asia. Food-borne transmission is theoretically

possible through consumption of contaminated animal

products (bats, civets), but has never been documented

[98]. Theoretically, fresh produce could be contaminated

with faeces and urine from infected wild animal hosts, but

this mode of transmission has not been documented.

Transmission and Survival on Plants

Zoonotic food-borne pathogens shed by wild animals can

be spread to plants by direct deposition of faecal material

onto the plant, or by indirect contamination of agriculture

water, soil, compost, farm equipment and other fomites

such as worker boots and clothing. Incidental transmis-

sion from contaminated fur, feathers or the oral cavity

of a colonized animal or insect (regurgitation) may also

represent a route of transmission to plants [21]. The plant

types most vulnerable to microbial contamination are

those consumed raw or minimally processed since there

is no ‘kill step’ to remove pathogens. Fresh-cut, ready-to-

eat packaged salads and other produce have unique con-

cerns with regard to microbial contamination as described

below [110]. Crops grown close to the ground such as

leafy greens (lettuce, spinach), edible herbs (basil, cilan-

tro), strawberries and tree nuts (almonds) harvested on

the ground are at risk of faecal contamination by wild

animals. Bird droppings can be a concern particularly

when plants are grown under roosting areas such as trees

and utility lines. Irrigation canals and ponds may also serve

as wild animal habitat, thus could require additional

microbiological quality monitoring compared with well or

municipal agricultural water sources.

Food-borne pathogens are generally not part of the

normal microflora of agricultural crops. Thus, once

introduced onto the plant surface, most of these microbes

face a hostile environment and die-off within hours to

days [111, 112]. However, there are recurring plant–

pathogen combinations associated with produce-related

outbreaks and recalls that suggest some degree of

pathogen adaptation to the plant environment (Table 1).

For example, Mandrell in 2011 reviewed produce-related

outbreaks from 1995 to 2008 where pre-harvest con-

tamination was suspected and identified E. coli O157

as the cause of 29 outbreaks linked to lettuce or spinach

in four countries [15]. In contrast, all of the tomato-

associated outbreaks were due to Salmonella spp. in the

same period.

Brandl in 2006 reviewed the major factors that influ-

ence the ability of zoonotic enteric pathogens to survive

and grow in the plant environment and identified epiphytic

fitness, physiochemical nature of the plant surface, biofilm

formation, microbe-microbe and plant-microbe inter-

actions [111]. There is evidence that cut surfaces, injury

and plant diseases may promote attachment and growth

of E. coli O157 and Salmonella. It has been speculated that

the disproportionate number of outbreaks due to fresh-

cut produce may relate to the increased availability of

attachment sites and nutrients for the enteric pathogen

to utilize [111–113]. Other plant physical characteristics

that may promote bacterial survival include uneven

surfaces such as netted melons (versus a smooth or

waxed surface), hairs (raspberries) and the presence of

a stem. Organic material (soil, faeces) on the plant may

serve to protect more fragile bacterial species such as

Campylobacter from unfavourable temperature, atmo-

sphere or UV conditions. For example, it was suspected

that a pea–soil–bird faecal mixture brought into the

shelling/processing area after mechanical harvest was a
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contributing factor in a large campylobacteriosis outbreak

from raw shelled-peas sold locally in Alaska [11].

Since many of the zoonotic enteric pathogens have a

low infectious dose (Table 1), attachment and inter-

nalization of even a few cells is of concern because con-

sumers cannot simply wash the fresh produce to protect

themselves from exposure. Internalization of fresh pro-

duce by E. coli O157 and Salmonella root uptake has

been demonstrated experimentally, but its importance

under natural conditions is still unclear [114–117]. Some

organisms also have the ability to enter and attach to plant

leaf stomata (pores) where the cells are then protected

from rigorous washing and chemical sanitizing agents used

by the fresh-cut produce industry [111].

Assessing Risk from Field to Fork

The level of risk from a particular domestic or wild animal

population in the microbial contamination of plant crops

is dependent on multiple factors including pathogen pre-

valence in the population, concentration of the pathogen

(number of cells shed per gram of faeces), volume of

faecal material produced per defecation and the popula-

tion density [79]. Indeed, given the few examples of

contamination events linked to wild animal carriers, the

risk could be characterized as a low probability, high

consequence event. However, lessons from notable out-

breaks described in this review suggest that a ‘perfect

storm’ can tip the odds to a higher probability event,

especially if crops are exposed to large numbers of

infected animals shedding food-borne pathogens in the

field. In-field microbial contamination in combination with

downstream opportunities for survival and amplification

during processing, distribution and storage of ready-to-eat

and raw agricultural commodities enhances this risk.

Danyluk and Schaffner in 2011 published a quantitative

microbial risk assessment explaining the plausibility of an

in-field contamination event leading to the 2006 E. coli

O157:H7 spinach outbreak [118]. The model predicted

that pathogen concentration in the field as low as 71 log

CFU/g at 0.1% prevalence of plant contamination could

have caused an outbreak of the magnitude of the spinach

outbreak (205 reported illnesses, 4112 estimated illnesses

multiplying by the CDC 26.1 underreporting factor).

The model also predicted that with this starting level,

the bacteria could have increased by as much as 1 log

CFU/day under optimal temperature conditions, and

99.2% of the illnesses could be attributed to cross-con-

tamination of cut spinach pieces during washing. In addi-

tion, bacterial attachment to the cut spinach pieces and

stomata plus utilization of nutrients released from the

injured (cut) plant leaves could have contributed to the

survival and growth of the pathogen [99].

Considering this model, Figure 2 illustrates a hypothe-

tical scenario of an in-field faecal deposition source of

the 2006 E. coli O157:H7 spinach outbreak. Alternative

scenarios to explain the in-field contamination include

faecal contamination of the agricultural well water [119]

or unreported use of surface water or untreated animal

manure as fertilizer. In the faecal deposition scenario, it is

hypothesized that equipment used to mechanically harvest

the baby spinach could have been contaminated with dirt

and animal faecal material (Figure 2). Once introduced

into the processing plant, post-harvest factors likely

contributed to the majority of illnesses regardless of

whether the original in-field source of E. coliO157:H7 was

faeces or contaminated water/soil [118]. Specifically, using

lot codes from patients’ leftover bags of spinach, the

packaged baby spinach traceback implicated a single lot

and shift at a San Juan Bautista processing plant [8]. The

plant’s records showed that the spinach originated from

four fields in two counties of the central California coast.

The outbreak strain was found in environmental samples

(cattle and feral swine faeces, river water/sediment, and

pasture soil) at one of the four ranches [8–9]. The

implicated field was located in San Benito County and

supplied only 1002 pounds of spinach from about 2 acres

of a 50 acre field. Spinach harvested from this field was

then mixed with 14 658 pounds of spinach from the other

three fields. The washed, cut spinach was packaged in

41 760 six-ounce bags and distributed throughout the

USA and Ontario, Canada. As perspective, it is worth

noting that an estimated 680 million pounds of fresh spi-

nach were consumed in 2005, compared with the total

volume of 15 660 pounds implicated in this outbreak [41].

Prevention and Control

Since fresh fruits, nuts and vegetables are not grown in

a sterile environment the ideal approach to pathogen

control would be minimizing in-field contamination fol-

lowed by a post-harvest processing step such as heat or a

chemical treatment that inactivates enteric pathogens on

plants. After several food-borne disease outbreaks, the

almond and processed juice industries implemented

mandatory treatment to control pathogens. Unfortu-

nately, many fresh-cut fruits and vegetables are not readily

amendable to pasteurization or another type of treatment

step to achieve an adequate log reduction of enteric

pathogens during processing. Likewise, some raw agri-

cultural commodities are field-packed and not subject to a

processing step. Irradiation is one approach that could

potentially be effective in reducing or eliminating patho-

gens in fresh produce, especially if attached to pores or

internalized in the plant tissue [120]. However, this

technology is not currently utilized by the fresh produce

industry due to potential quality concerns, limited avail-

ability of irradiation facilities, regulatory constraints and

opposition by some consumer groups.

Because there is no ‘kill step’ for most fresh produce

commodities, preventing in-field contamination of

edible plants becomes critically important to protect the
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public health. A number of GAP guidance documents for

higher risk commodities have been published by industry

groups and regulatory agencies [17, 18, 121–130]. Table 2

shows examples of regulations and GAP guidelines that

specifically address wild animal activity and/or faecal

material in or around crop fields. Management of produce

food safety risks from potential wild animal sources is

particularly challenging in open crop fields and orchards.

Unlike agricultural water and soil amendment metrics that

can be quantified and audited using microbiological testing

criteria, for example, best practices related to wild ani-

mals tend to be non-specific and difficult to measure or

enforce. The wildlife component of GAP programmes

generally involves conducting pre-season and pre-harvest

environmental risk assessments; monitoring for animal

intrusion and faecal contamination of the production

environment during growth and harvest; establishment of

no-harvest zones where product may be contaminated

from animal activity/faeces; and training of farm workers

to recognize, report and mitigate these risks.

Although there is a large body of literature that

addresses wildlife damage control related to agricultural

crop loss [131], a paucity of species-specific, targeted

approaches that consider wild animals in the context of

food safety risks exist in the literature [132–134]. The US

Department of Agriculture estimates that wildlife damage

to fruit, nut and vegetable crops causes over 146 million

dollars of damage per year in the USA with deer, rodents,

crows, raccoons and rabbits being the most frequently

reported species causing the damage [135]. The costs due

to food safety-related damages from wild animals have not

been quantified.

Perhaps due in part to the limited understanding of

best management practices for potential wild animal

risks, some food safety practices have resulted in conflicts

with conservation and water quality programmes in agri-

cultural areas [136]. For example, poison bait stations

to control rodent and bird populations, fences and

habitat modification near produce fields to purportedly

reduce wildlife attraction, are practices that have been

cited as detrimental to environmental stewardship goals

(Figure 3). Co-management is a concept that has emerged

to resolve potential conflicts between food safety and

conservation goals. Co-management is defined as an

approach to conserving soil, water, air, wildlife and other

natural resources while simultaneously minimizing micro-

biological hazards associated with food production [136].

Several industry guidelines have incorporated the co-

management concept into their best practices [17, 18, 121].

Conclusions

In summary, wild animals are one of several potential

sources of zoonotic food-borne pathogens that could

contaminate fresh and minimally processed or fresh-cut

fruits, nuts, vegetables and other edible plants grown in

open fields and orchards. Pre-harvest microbial con-

tamination from wild animal activity in the production

environment represents a public health risk because of

the low infectious dose of many of these zoonotic enteric

pathogens, and the potential for downstream survival

and amplification of pathogens during harvest, processing,

transportation and storage. There is a need to better

understand the predisposing factors that contribute to

microbial contamination of plants from wild animals in

comparison with other sources in the growing environ-

ment. The goal should be to develop species-specific,

targeted mitigation strategies for risks from wild animals,

while also promoting co-management of food safety and

environmental stewardship in the agricultural landscape.
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